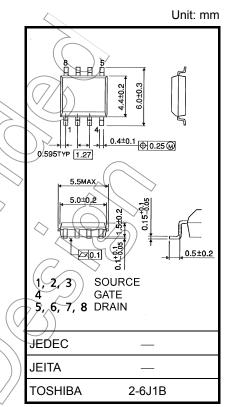
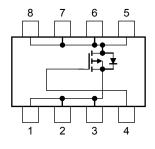
TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSV)


TPC8119

Lithium-Ion Battery Applications Load switch Applications Notebook PC Applications

- Small footprint due to a small and thin package
- Low drain-source ON-resistance: R_{DS} (ON) = 10 m Ω (typ.)
- High forward transfer admittance: $|Y_{fs}| = 24 \text{ S} (typ.)$
- Low leakage current: $I_{DSS} = -10 \mu A (max) (V_{DS} = -30 V)$
- Enhancement mode: $V_{th} = -0.8$ to -2.0 V ($V_{DS} = -10$ V, $I_D = -1$ mÅ)


osolute maximum Ratings (1a = 25°C)						
Characteristics		Symbol	Rating	Unit		
Drain-source voltage		V _{DSS} <	-30	X		
Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)		VDGR	-30	$\langle \mathbf{v} \rangle$		
Gate-source voltage			V _{GSS})) ±20	V	
Drain current	DC	(Note 1)		-10	A	
	Pulse	(Note 1)		-40	A	
Drain power dissipation (t = 10 s) (Note 2a)		PD	1.9	W		
Drain power dissipation $(t = 10 s)$ (Note 2b)			PD (w	
Single pulse avalanche energy (Note 3)			EAS	67	mJ	
Avalanche current		I _{AR}	_10	A		
Repetitive avalanche energy (Note 2a) (Note 4)		EAR	0.030	mJ		
Channel temperature		Tch	150	°C		
Storage temperature range		T _{stg}	-55 to 150	°C		

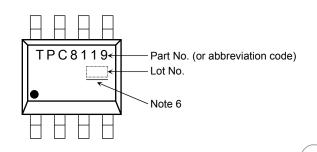
Absolute Maximum Ratings (Ta = 25°C)

Weight: 0.080 g (typ.)

Circuit Configuration

Note: For Notes 1 to 4, refer to the next page.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).


This transistor is an electrostatic-sensitive device. Please handle with care.

TOSHIBA


Thermal Characteristics

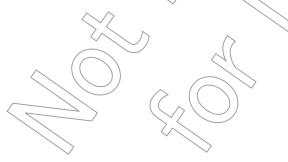
Characteristics	Symbol	Max	Unit
Thermal resistance, channel to ambient $(t=10\ s) \mbox{(Note 2a)} \label{eq:linear}$	R _{th (ch-a)}	65.8	°C/W
$\label{eq:thermal} \begin{array}{l} \mbox{Thermal resistance, channel to ambient} \\ (t=10 \ s) & (\mbox{Note } 2b) \end{array}$	R _{th (ch-a)}	125	°C/W

Marking (Note 5)

- Note 1: Ensure that the channel temperature does not exceed 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (a) (b) Device mounted on a glass-epoxy board (b)

- Note 3: $V_{DD} = -24 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.5 mH, R_G = 25 Ω , I_{AR} = -10 A
- Note 4: Repetitive rating: pulse width limited by maximum channel temperature
- Note 5: on the lower left of the marking indicates Pin 1
 - * Weekly code: (Three digits)

Note 6: A line under a Lot No. identifies the indication of product Labels. Not underlined: [[Pb]]/INCLUDES > MCV Underlined: [[G]]/RoHS COMPATIBLE or [[G]]/RoHS [[Pb]]


Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. The RoHS is the Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Electrical Characteristics (Ta = 25°C)

Ch	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	rrent	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$		—	±100	nA
Drain cut-off curr	rent	I _{DSS}	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-10	μA
Drain-source breakdown voltage		V (BR) DSS	$I_D = -10$ mA, $V_{GS} = 0$ V	-30			v
		V (BR) DSX	$I_D = -10 \text{ mA}, V_{GS} = 20 \text{ V}$	-13		_	
Gate threshold voltage		V _{th}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$	-0.8)/~(-2.0	V
Drain-source ON resistance		R _{DS (ON)}	$V_{GS} = -4 V, I_D = -5 A$		20	28	-mΩ
			$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -5 \text{ A}$	\bigcirc	10	13	
Forward transfer	admittance	Y _{fs}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -5 \text{ A}$	12	24	_	S
Input capacitance		C _{iss}			1560	_	
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		350		pF
Output capacitance		C _{oss}			475	\searrow	
Switching time	Rise time	t _r		-(C	8	>	
	Turn-on time	t _{on}	$V_{GS} = 0 V$		16	_	20
	Fall time	t _f		\mathcal{T}	55	_	ns
	Turn-off time	toff	$V_{DD} \approx -15$ V Duty $\leq 1\%$, t _w = 10 µs) —	145	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \approx -24 \text{ V}, \text{ V}_{GS} = -10 \text{ V},$		40		_
Gate-source charge 1		Q _{gs1}	$I_{\rm D} = -10 {\rm A}$	—	5	—	nC
Gate-drain ("miller") charge		Qgd		_	13	_	

Source-Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Min	Тур.	Max	Unit
Drain reverse current Pulse (Note 1)	I _{DRP} —		_	-40	А
Forward voltage (diode)	V_{DSE} IDR = 10 A, V _{GS} = 0 V		_	1.2	V

