DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

NJM 2100 is a low supply voltage and low saturation output voltage ($\pm 2.0 \text{ V p-p}$ at supply voltage $\pm 2.5 \text{V}$) operational amplifier. It is applicable to handy type CD, radio cassette CD, and portable DAT, that are digital audio apparatus which require the 5 V single supply operation and high output voltage.

■ FEATURES

- Single Supply Operation
- Operating Voltage

Low Saturation Output Voltage

High Slew Rate

Package Outline

Bipolar Technology

 $(\pm 1.0 \text{V} \sim \pm 3.5 \text{V})$

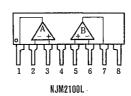
 $(4V/ \mu s \text{ typ.})$

DIP8, DMP8, SIP8, SSOP8

■ PACKAGE OUTLINE

NJM 2100 M

NJM 2100L



NJM2100V

■ PIN CONFIGURATION

PIN FUNCTION 1. A OUTPUT

- 2. A -INPUT
- 3. A +INPUT
- 4. V5. B +INPUT
 6. B -INPUT
 7. B OUTPUT

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

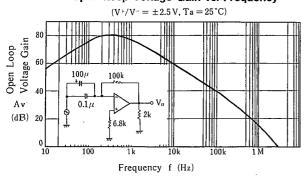
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±3.5	V
Differential Input Voltage	V _{ID}	±7	V
Input Voltage	V _{IC}	± 3.5	V
Power Dissipation	P _D	(DIP8) 500	mW
		(DIM8) 300	mW
		(SSOP8) 250	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-40~+85	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

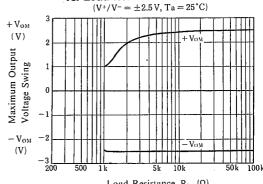
 $(Ta = 25^{\circ}C, V^{\dagger} = 5V)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S \leq 10k\Omega$	-	ı	6	mV
Input Bias Current	I _{1B}			100	300	nΑ
Large Signal Voltage Gain	Av	R _L ≥10kΩ	60	80	—	dB
Maximum Output Voltage Swing	V _{OM}	R _L ≧2.5kΩ	±2	±2.2	<u> </u>	V
Input Common Mode Voltage Range	V _{ICM}		±1.5		—	V
Common Mode Rejection Ratio	CMR	•	60	74		dB
Supply Voltage Rejection Ratio	SVR		60	80	—	dB
Operating Current	Icc	$V_{IN}=0, R_L=\infty$	-	3.5	5	mA
Slew Rate	SR	$A_V=1, V_{IN}=\pm 1V$	-	4	-	V/μS
Gain Bandwidth product .	GB	f=10kHz		12	-	MHz
	1	l .	ł.			L

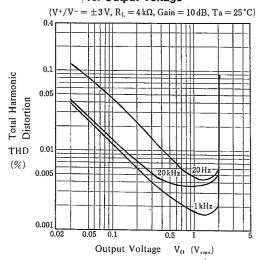

(Note 1) Applied circuit voltage gain is desired to be operated within the range of 3 dB to 30 dB.

(Note 2) Special care being required for input common mode voltage range and the oscillation due to the capacitive load when operating on voltage follower.

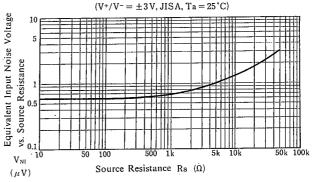
(Note 3) Special care being required for the oscillation, yet having the gain when the supply voltage is applied at more than 5 V (single supply voltage 5 V).


■ TYPICAL CHARACTERISTICS

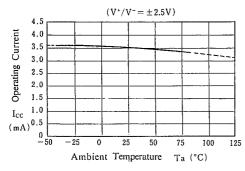
Open Loop Voltage Gain vs. Frequency

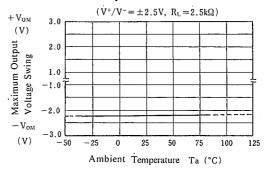

Maximum Output Voltage Swing

vs. Load Resistance

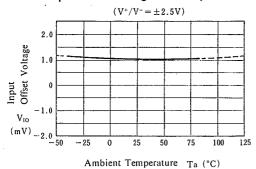


Load Resistance R_L (Ω)

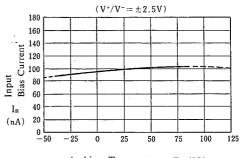

Total Harmonic Distortion vs. Output Voltage


Equivalent Input Noise Voltage vs. Source Resistance

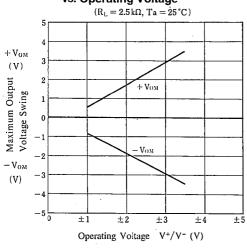
Operating Current vs. Temperature



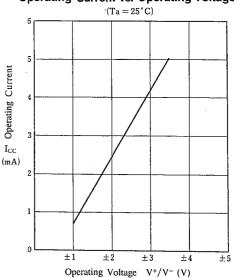
Maximum Output Voltage Swing vs. Temperature



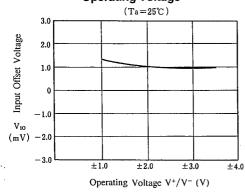
TYPICAL CHARACTERISTICS

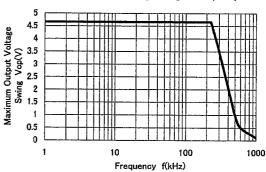


Input Bias Current vs. Temperature



Ambient Temperature Ta (°C)


Maximum Output Voltage Swing vs. Operating Voltage


Operating Current vs. Operating Voltage

Input Offset Voltage vs. Operating Voltage

Maximum Output Voltage Swing vs. Frequency

NJM2100

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.