International TOR Rectifier

DIGITAL AUDIO MOSFET

IRFI4212H-117P

Features

- Integrated half-bridge package
- · Reduces the part count by half
- · Facilitates better PCB layout
- Key parameters optimized for Class-D audio amplifier applications
- Low R_{DS(ON)} for improved efficiency
- Low Qg and Qsw for better THD and improved efficiency
- Low Qrr for better THD and lower EMI
- Can delivery up to 150W per channel into 4Ω load in half-bridge configuration amplifier
- Lead-free package

Key Parameters ©				
V_{DS}	100	V		
R _{DS(ON)} typ. @ 10V	58	mΩ		
Q _g typ.	12	nC		
Q _{sw} typ.	6.9	nC		
R _{G(int)} typ.	3.4	Ω		
T _J max	150	°C		

G1, G2	D1, D2	S1, S2
Gate	Drain	Source

Description

This Digital Audio MosFET Half-Bridge is specifically designed for Class D audio amplifier applications. It consists of two power MosFET switches connected in half-bridge configuration. The latest process is used to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery, and internal Gate resistance are optimized to improve key Class D audio amplifier performance factors such as efficiency, THD and EMI. These combine to make this Half-Bridge a highly efficient, robust and reliable device for Class D audio amplifier applications.

Absolute Maximum Ratings ⑤

·	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	100	V	
V_{GS}	Gate-to-Source Voltage	±20		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	11	A	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	6.8		
DM	Pulsed Drain Current ①	44		
P _D @T _C = 25°C	Power Dissipation @	18	W	
P _D @T _C = 100°C	Power Dissipation ®	7.0		
	Linear Derating Factor	0.14	W/°C	
E _{AS}	Single Pulse Avalanche Energy@	41	mJ	
T_J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300	\neg	
	(1.6mm from case)			
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)		

Thermal Resistance ⑤

The final free leading 6						
	Parameter	Тур.	Max.	Units		
$R_{ heta JC}$	Junction-to-Case 4		7.1	°C/W		
$R_{\theta JA}$	Junction-to-Ambient (free air)	_	65]		

www.irf.com 1