

SANYO Semiconductors DATA SHEET

LA7958

Monolithic Linear IC For TV, VTR Audio/Video Switch

Overview

This LA7958 is a Audio/Video Switch for TV, VTR.

Functions

- Audio: Possible to Change 4 Channel×2
- Video: Possible to Change 4 Channel, 6dB Amplifier, Y+C Amplifier

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{CC} V \max$	Pin 8	13.2	V
Allowable power dissipation	Pd max	Ta ≤ 70°C	300	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-55 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommending operation voltage	V _{CC}	Pin 8	9.0	V
Operating voltage range	V _{CC} op	Pin 8	8.0 to 12.0	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 9V$

Parameter	Symbol	Conditions	Ratings			Linit
			min	typ	max	Unit
Current dissipation	ICC	V _{CC} = 9V, No signal	11.2	14.0	16.8	mA
Audio Block						
Audio input DC voltage	INa		4.0	4.3	4.6	V
Audio output DC voltage	Oa		3.2	3.6	4.0	V
Audio channel bandwidth	Fa	-3dB frequency	100			kHz
Audio signal voltage gain	Aa	f = 1kHz, V _{IN} = 500mVrms	5.0	6.0	7.0	dB
Audio input dynamic range	Da	f = 1kHz, THD \leq 1%	2.0	2.5		Vp-p
Audio channel PSRR	PSa	V _{CC} = 9V+1Vp-p, SINE WAVE (50Hz)	35	50		dB
Audio channel input impedance	Ria		80	100	120	kΩ
Audio channel output impedance	Roa		40	50	65	Ω
Audio channel crosstalk	СТа	f = 1kHz	65	80		dB
Audio channel S/N	SNa	Filter = DIN/AUDIO	70	85		dB
Audio channel THD	THDa	f = 1kHz, V _{IN} = 500mVrms		0.15	0.3	%
Video Block						
Video input DC voltage	INv		4.0	4.3	4.6	V
Video output DC voltage	Ov		3.2	3.6	4.0	V
Video channel bandwidth	Fv	-3dB frequency	10			MHz
Video signal voltage gain	Av	f = 500kHz, V _{IN} = 1Vp-p	5.0	6.0	7.0	dB
Video input dynamic range	Dv	f = 100kHz, THD \leq 1%	2.0	2.5		Vp-p
Video channel PSRR	PSv	SINE WAVE (50Hz)	35	50		dB
Video channel input impedance	Riv		8.0	10	12.0	kΩ
Video channel output impedance	Rov		29	37	48	Ω
Video channel crosstalk	CTv	f = 3.58MHz, V _{IN} = 1Vp-p	45	60		dB
Video channel noise	SNv	Bandwidth 10MHz	57	62		dB
Y, C Mixer						
Y input DC voltage	INy		4.0	4.3	4.6	V
C input DC voltage	INc		4.0	4.3	4.6	V
Y+C signal voltage gain	Аус	Yin = 1Vp-p, Cin = 0.3Vp-p	5.0	6	7.0	dB
Differential gain	DG			2.0	3.5	%
Differential phase	DP			1.0	2.0	deg
Mode Selection Block						
Mode selection threshold voltage	Vmth		2.2	2.6	3.0	V

Logic True Table Video-Output

A D' 14	D D: 10	C : Pin 15			
A.PINTI	B. PIII 13	L	OPEN	Н	
L	L	VTV	VTV	VTV	
Н	L	V1	V1	V1	
L	Н	V2	V2	V2	
н	Н	Y+C	V3/Y	V3/Y	

VTV = (-A)*(-B) V2 = (-A)*(B)

 $\begin{array}{l} \mathsf{V1}=(\mathsf{A})^*(\mathsf{-B}) \\ \mathsf{V3}=(\mathsf{A})^*(\mathsf{B})^*(\mathsf{-}(\mathsf{C}\!=\!\mathsf{L}))/\mathsf{Y}\!=\!(\mathsf{A})^*(\mathsf{B})^*(\mathsf{-}(\mathsf{C}\!=\!\mathsf{L})) \end{array}$

Y+C = (A)*(B)*(C=L) Audio-R-Output

	•				
A : Pin 11	B : Pin 13	C : Pin 15			
		L	OPEN	Н	
L	L	RTV	RTV	RTV	
Н	L	R1	R1	R1	
L	Н	R2	R2	R2	
Н	Н	R3	R3	R3	
RTV = (-A)*(-B)		R1 = (A)*(-B)			

 $RTV = (-A)^{*}(-E)$ $R2 = (-A)^{*}(B)$ $R^{T} = (A) (-B)$ $R^{T} = (A)^{*}(B)$

Audio-L-Output

A : Pin 11	B : Pin 13	C : Pin 15			
		L	OPEN	Н	
L	L	LTV	LTV	LTV	
Н	L	L1	L1	L1	
L	Н	L2	L2	L2	
Н	Н	L3	L3	L3	

LTV = (-A)*(-B) L2 = (-A)*(B) $L1 = (A)^{*}(-B)$ $L3 = (A)^{*}(B)$

Package Dimensions

unit : mm

3010A

Pin Assignment

Block Diagram

No.	Parameter	Explanations	Test circuit
1	Video signal voltage gain (Av)	P : Pins 7, 9, 12, 19 Q : Pin 16 $V_{IN} = 1Vp-p$ Input inpedance 75k Ω Av = 20 log Vout/V _{IN} (dB)	10µF P Q Vour f=500kHz m OMP06171
2	Video channel bandwidth (Fv)	P : Pins 7, 9, 12, 19 Q : Pin 16 V _{IN} = 1Vp-p A frequency which becomes -3dB is measured.	
3	Video channel noise (SNv)	P : Pins 7, 9, 12, 19 Q : Pin 16	
4	Video channel crosstalk (CTv)	P : Pin 7 (Pins 9, 12, 19) O : Pins 9, 12, 19 (Pin 7) Q : Pin 16	10µF P C F=3.58MHz VIN=1Vp-P VIN=1Vp-P C C C C C C C C C C C C C
5	Video channel PSRR (PSv)	Pin 8, f = 50Hz V _{IN} = 1Vp-p P : Pins 7, 9, 12, 19 Q : Pin 16	^{№50H/z} VIN ^{-1VP-p} 10µ ^F 10µ ^F + + Р (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
6	Audio signal voltage gain (Aa)	P : Pins 1, 2, 3, 4, 5, 6, 21, 22 Q : Pins 17, 18 V _{IN} = 500mVrms Aa = 20 log Vout/V _{IN} (dB)	Vin=500mVres Vin=500mVres G f=1kHz /// // // // // // // // //

Continued on next page.

Continued f	rom preceding page.		
No.	Parameter	Explanations	Test circuit
7	Audio channel bandwidth (Fa)	P : Pins 1, 2, 3, 4, 5, 6, 21, 22 Q : Pins 17,18 V _{IN} = 500mVrms A frequency which becomes -3dB is measured.	VIN=500mVres VIN S S VIN F=1kHz TT TT OMPD6175
8	Audio channel THD (THDa)		It's the same Audio Signal Voltage Gain measurement circuit.
9	Audio channel S/N (SNa)	P : Pins 1, 2, 3, 4, 5, 6, 21, 22 Q : Pins 17, 18	
10	Audio channel crosstalk (CTa)	P : Pins 2, 3, 4, 5, 6, 21, 22 Q : Pins 17,18	t=1kHz v _{IN} =500mVms ↓µF v _{IN} =500mVms ↓µF ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
11	Audio channel PSSR (PSa)	Pin 8, f = 50Hz V _{IN} = 1Vp-p P : Pins 1, 2, 3, 4,5, 6, 21, 22 Q : Pins 17, 18	P=50Hz VIN=TVP-P ↓↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Test Circuit

OMB06068

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of Novemver, 2006. Specifications and information herein are subject to change without notice.