

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to $\overline{\text{CP}}$) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES LOADING (Note a) HIGH LOW \overline{CP}_0 Clock (Active LOW going edge) Input to 0.5 U.L. 1.5 U.L. ÷2 Section CP₁ Clock (Active LOW going edge) Input to 0.5 U.L. 2.0 U.L. ÷5 Section (LS90), ÷6 Section (LS92) Clock (Active LOW going edge) Input to CP₁ 1.0 U.L. 0.5 U.L. ÷8 Section (LS93) MR₁, MR₂ Master Reset (Clear) Inputs 0.5 U.L. 0.25 U.L. 0.5 U.L. MS₁, MS₂ Master Set (Preset-9, LS90) Inputs 0.25 U.L. Output from ÷2 Section (Notes b & c) 10 U.L. 5 (2.5) U.L. Q_0 10 U.L. Q₁, Q₂, Q₃ Outputs from ÷5 (LS90), ÷6 (LS92), 5 (2.5) U.L. ÷8 (LS93) Sections (Note b)

NOTES

- a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74)
 Temperature Ranges.
- c. The Q₀ Outputs are guaranteed to drive the full fan-out plus the CP₁ input of the device.
- d. To insure proper operation the rise (t_f) and fall time (t_f) of the clock must be less than 100 ns.

SN54/74LS90 SN54/74LS92 SN54/74LS93

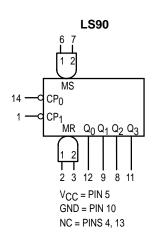
DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

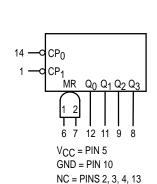
LOW POWER SCHOTTKY

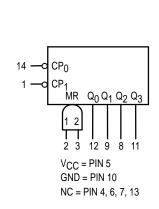
J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

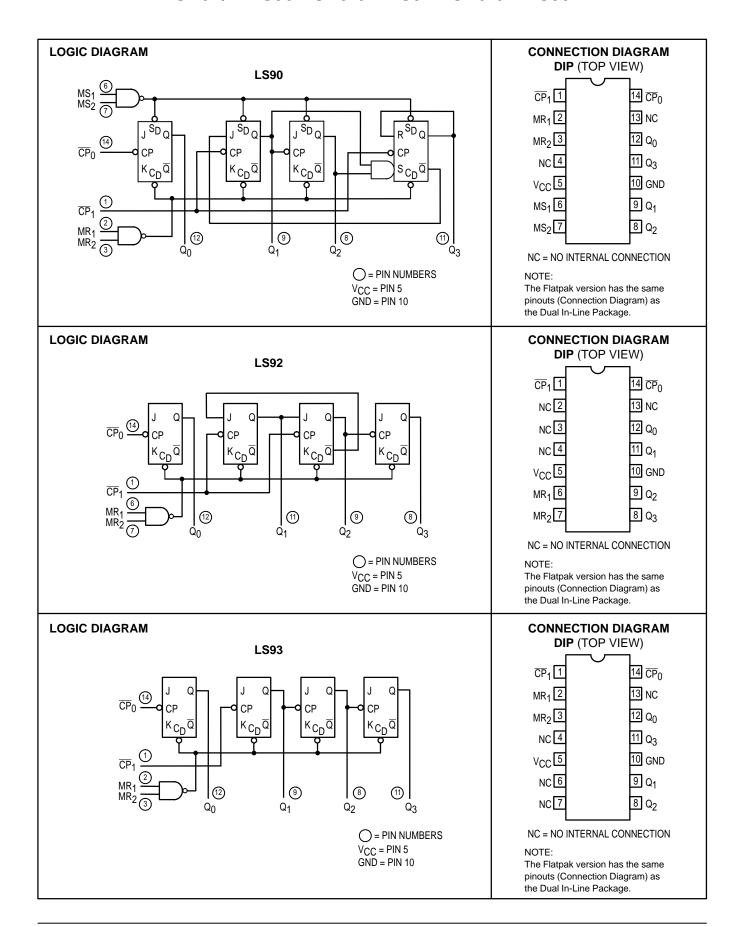
D SUFFIX SOIC CASE 751A-02


ORDERING INFORMATION


SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC


LS93

LOGIC SYMBOL


LS92

SN54/74LS90 • SN54/74LS92 • SN54/74LS93

SN54/74LS90 • SN54/74LS92 • SN54/74LS93

FUNCTIONAL DESCRIPTION

The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The $\rm Q_0$ output of each device is designed and specified to drive the rated fan-out plus the $\overline{\rm CP}_1$ input of the device.

A gated AND asynchronous Master Reset (MR₁ \bullet MR₂) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set (MS₁ \bullet MS₂) is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

- A. BCD Decade (8421) Counter The \(\overline{CP}_1\) input must be externally connected to the Q₀ output. The \(\overline{CP}_0\) input receives the incoming count and a BCD count sequence is produced.
- B. Symmetrical Bi-quinary Divide-By-Ten Counter The Q₃ output must be externally connected to the \overline{CP}_0 input. The input count is then applied to the \overline{CP}_1 input and a divide-byten square wave is obtained at output Q₀.

C. Divide-By-Two and Divide-By-Five Counter — No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (\overline{CP}_0 as the input and Q_0 as the output). The \overline{CP}_1 input is used to obtain binary divide-by-five operation at the Q_3 output.

LS92

- A. Modulo 12, Divide-By-Twelve Counter The \overline{CP}_1 input must be externally connected to the Q₀ output. The \overline{CP}_0 input receives the incoming count and Q₃ produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter —No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The CP₁ input is used to obtain divide-by-three operation at the Q₁ and Q₂ outputs and divide-by-six operation at the Q₃ output.

LS93

- A. 4-Bit Ripple Counter The output Q_0 must be externally connected to input \overline{CP}_1 . The input count pulses are applied to input \overline{CP}_0 . Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q_0 , Q_1 , Q_2 , and Q_3 outputs as shown in the truth table.
- B. 3-Bit Ripple Counter— The input count pulses are applied to input \overline{CP}_1 . Simultaneous frequency divisions of 2, 4, and 8 are available at the Q_1 , Q_2 , and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.