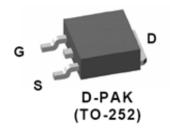
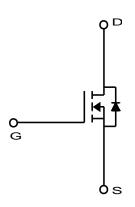


MDD1051


Single N-channel Trench MOSFET 150V, 28A, 46mΩ


General Description

The MDD1051 uses advanced MagnaChip's MOSFET Technology, which provides high performance in on-state resistance, fast switching performance and excellent quality. MDD1051 is suitable device for Synchronous Rectification For Server and general purpose applications.

Features

- $^{\square}$ $V_{DS} = 150V$
- $I_D = 28A @V_{GS} = 10V$
- □ R_{DS(ON)}
 - $< 46.0 \text{ m}\Omega \text{ @V}_{GS} = 10V$
- 100% UIL Tested
- 100% Rg Tested

Absolute Maximum Ratings (Ta = 25°C)

Chara	Symbol	Rating	Unit		
Drain-Source Voltage		$V_{ extsf{DSS}}$	150	V	
Gate-Source Voltage		V _{GSS}	±20 V		
Continuous Drain Current (1)	T _C =25°C (Silicon Limited)	1	28	А	
	T _C =100°C	l _D	18		
Pulsed Drain Current		I _{DM}	110	ı	
Power Dissipation	T _C =25°C	Б	70	W	
	T _C =100°C	P _D	28		
Single Pulse Avalanche Energy (2)		E _{AS}	40.5	mJ	
Junction and Storage Temperature Range		T _J , T _{stg}	-55~150	°C	

Thermal Characteristics

Characteristics	Symbol	Rating	Unit
Thermal Resistance, Junction-to-Ambient (1)	$R_{\theta JA}$	50	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.8	

1

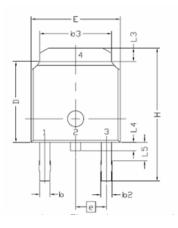
Ordering Information

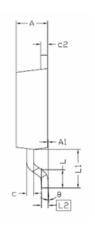
Part Number	Temp. Range	Package	Packing	RoHS Status
MDD1051RH	-55~150°C	D-PAK	Tape & Reel	Halogen Free

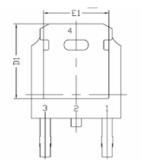
Electrical Characteristics (T_J =25°C)

Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
Static Characteristics	•		'	•	•	•
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	150	-	-	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.2	2.2	3.2	V
Drain Cut-Off Current	I _{DSS}	$V_{DS} = 120V, V_{GS} = 0V$	-	-	1.0	
Gate Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±0.1	μA
Drain-Source ON Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 20A$	-	37.0	46.0	mΩ
Forward Transconductance	g _{fs}	$V_{DS} = 10V, I_{D} = 20A$	-	30	-	S
Dynamic Characteristics	•		•	•	•	
Total Gate Charge	Q_g		-	19.6	-	
Gate-Source Charge	Q_{gs}	$V_{DS} = 75V, I_{D} = 20A, V_{GS} = 10V$	-	5.2	-	nC
Gate-Drain Charge	Q_{gd}		-	5.2	-	
Input Capacitance	C _{iss}		-	1270	-	
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 40V, V_{GS} = 0V,$ f = 1.0MHz	-	40	-	рF
Output Capacitance	C _{oss}		-	405	-	
Turn-On Delay Time	t _{d(on)}		-	15	-	
Rise Time	t _r	$V_{GS} = 10V, V_{DS} = 75V,$ $I_{D} = 20A, R_{G} = 3.0\Omega$	-	10	-	
Turn-Off Delay Time	t _{d(off)}		-	20	-	ns
Fall Time	t _f		-	5	-	
Gate Resistance	Rg	f=1 MHz	-	1.8	-	Ω
Drain-Source Body Diode Characteristics	5			•	•	
Source-Drain Diode Forward Voltage	V_{SD}	$I_{S} = 20A, V_{GS} = 0V$	-	0.9	1.3	V
Body Diode Reverse Recovery Time	t _{rr}	1 000 41/44 - 4000 (:	-	73		ns
Body Diode Reverse Recovery Charge	Qrr	I _F = 20A, dl/dt = 100A/μs	-	245		nC

Note:


^{1.} Surface mounted FR-4 board by JEDEC (jesd51-7). Continuous current at Tc=25 $^{\circ}$ C is silicon limited


^{2.} E_{AS} is tested at starting Tj = 25 $^{\circ}\text{C}$, L = 1.0mH, I_{AS} = 9.0A, V_{GS} = 10V.


Package Dimension

2 Leads, DPAK (TO-252)

Dimensions are in millimeters unless otherwise specified

Symbol	Min.	Nom.	Max.		
E	6,35	-	6,73		
L	1,40	1,52	1,78		
L1	2,74 REF				
L1 L2 L3 L4 L5		0,508 BCS			
L3	0,89	-	1,27		
L4	-	-	1,02		
L5	1,14	-	1,52		
D	5,97	6,10	6,22		
H b	9,40	-	10,41		
b	0,64	-	0,89		
b2	0,76	-	1,14		
b3	4,95	_	5,46		
е	2,286 BSC				
Α	2,18	_	2,39		
A 1	-	_	0,13		
С	0,46	_	0,61		
c c2	0,46	-	0,89		
D1	5,21	_	_		
E1	4,32	_	_		
Θ	0,00	_	10,00		

DISCLAIMER:

The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. Seller's customers using or selling Seller's products for use in such applications do so at their own risk and agree to fully defend and indemnify Seller.

MagnaChip reserves the right to change the specifications and circuitry without notice at any time. MagnaChip does not consider responsibility for use of any circuitry other than circuitry entirely included in a MagnaChip product. MagnaChip is a registered trademark of MagnaChip Semiconductor Ltd.