Data Sheet

December 15, 2011

FN483.6

General Purpose NPN Transistor Array

The CA3086 consists of five general-purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially connected pair.

The transistors of the CA3086 are well suited to a wide variety of applications in low-power systems at frequencies from DC to 120MHz. They may be used as discrete transistors in conventional circuits. However, they also provide the very significant inherent advantages unique to integrated circuits, such as compactness, ease of physical handling and thermal matching.

Ordering Information

intersil

PART NUMBER (BRAND)	TEMP. RANGE (^o C)	PACKAGE	PKG. DWG. #	
CA3086	-55 to 125	14 Ld PDIP	E14.3	
CA3086M96 (3086)	-55 to 125	14 Ld SOIC Tape and Reel	M14.15	

Applications

- Power Applications from DC to 120MHz
- General-Purpose Use in Signal Processing Systems Operating in the DC to 190MHz Range
- Temperature Compensated Amplifiers
- See Application Note, AN5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for Suggested Applications

Pinout

Absolute Maximum Ratings

The following ratings apply for each transistor in the device:

Collector-to-Emitter Voltage, V _{CEO}	.15V
Collector-to-Base Voltage, V _{CBO}	.20V
Collector-to-Substrate Voltage, V _{CIO} (Note 1)	.20V
Emitter-to-Base Voltage, VEBO	5V
Collector Current, I _C	50mA

Operating Conditions

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (^o C/W)) θ _{JC} (^o C/W)			
PDIP Package	110	N/A			
SOIC Package	130	N/A			
Maximum Power Dissipation (Any one tran	nsistor)	300mW			
Maximum Junction Temperature (Plastic Package)150°C					
Maximum Storage Temperature Range	6	65°C to 150°C			
Maximum Lead Temperature (Soldering 10 (SOIC - Lead Tips Only)	Os)	300 ⁰ C			

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. The collector of each transistor in the CA3086 is isolated from the substrate by an integral diode. The substrate (Terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. To avoid undesirable coupling between transistors, the substrate (Terminal 13) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications T_A = 25^oC, For Equipment Design

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Collector-to-Base Breakdown Voltage	V _{(BR)CBO}	$I_{C} = 10 \mu A, I_{E} = 0$	20	60	-	V
Collector-to-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_{C} = 1mA, I_{B} = 0$	15	24	-	V
Collector-to-Substrate Breakdown Voltage	V _{(BR)CIO}	$I_{C} = 10\mu A, I_{CI} = 0$	20	60	-	V
Emitter-to-Base Breakdown Voltage	V _{(BR)EBO}	$I_{E} = 10 \mu A, I_{C} = 0$	5	7	-	V
Collector-Cutoff Current (Figure 1)	I _{CBO}	$V_{CB} = 10V, I_E = 0,$	-	0.002	100	nA
Collector-Cutoff Current (Figure 2)	I _{CEO}	$V_{CE} = 10V, I_{B} = 0,$	-	(Figure 2)	5	μΑ
DC Forward-Current Transfer Ratio (Figure 3)	h _{FE}	$V_{CE} = 3V$, $I_C = 1mA$	40	100	-	

Electrical Specifications $T_A = 25^{\circ}C$, Typical Values Intended Only for Design Guidance

PARAMETER	SYMBOL	TEST CONDITIONS		TYPICAL VALUES	UNITS
DC Forward-Current Transfer Ratio	h _{FE}	$V_{CE} = 3V$	I _C = 10mA	100	
(Figure 3)			$I_{C} = 10 \mu A$	54	
Base-to-Emitter Voltage (Figure 4)	V_{BE}	$V_{CE} = 3V$	I _E = 1 mA	0.715	V
			I _E = 10mA	0.800	V
V _{BE} Temperature Coefficient (Figure 5)	$\Delta V_{BE} / \Delta T$	$V_{CE} = 3V$, $I_C = 1 \text{ mA}$		-1.9	mV/ ^o C
Collector-to-Emitter Saturation Voltage	V _{CE SAT}	I _B = 1mA, I _C = 10mA		0.23	V
Noise Figure (Low Frequency)	NF	$ f = 1 kHz, V_{CE} = 3V, I_C = 100 \mu A, \\ R_S = 1 k \Omega $		3.25	dB