SWITCHING OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

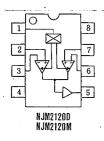
The NJM 2120 is a dual operational amplifier of 2-INPUT and 1-OUTPUT with analog switch. The NJM2120 can be used as analog switch under the condition of Gv=0 dB, as Switch+Amp in order that each gain (A or B) can be adjusted independently. Each amplifier of the NJM2120 has the same electrical characteristics as the NJM4558.

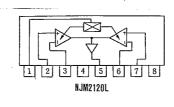
The NJM2120 is suitable for Audio, Video, Electrical musical instrument...etc.

■ PACKAGE OUTLINE

NJM2120D

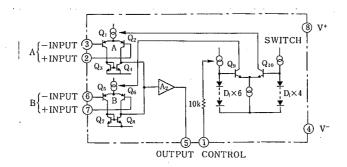
NJM2120M


FEATURES


- Analog Switch Function
- Operating Voltage
- Slew Rate Wide Unity Gain Bandwidth
- Package Outline
- $(\pm 2.5 V \sim \pm 18 V)$
- $(2.2V/\mu s typ.)$ (7MHz typ.)
- DIP8, DMP8, SIP8
- Bipolar Technology

NJM2120L

PIN CONFIGURATION



PIN FUNCTION 1. SW. CONTROL

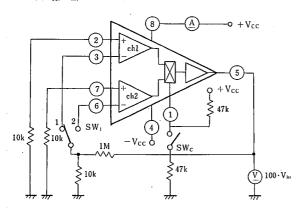
- Α +INPUT
- -INPUT
- -INPUT
- 2. A +INP 3. A -INP 4. V-5. OUTPUT 6. B -INP 7. B +INP 8. V+ +INPUT

■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

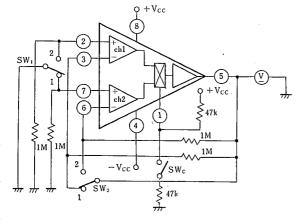
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+/V-	±18	V
Differential Input Voltage	V _{ID}	±30	V
Input Voltage	Vic	±15 (note)	V
Output Current	Io	±50	mA
		(DIP8) 500	. mW
Power Dissipation	PD	(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-40~+85	r
Storage Temperature Range	Tstg	-40~+125	r


ELECTRICAL CHARACTERISTICS

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	Vin SW ON		2.3	6.0	mA
		SW OFF	_	2.1	6.0	mA
Input Offset Voltage	Vio	$R_S = 10k\Omega$		0.8	6.0	mV
Input Bias Current	IB		-	80	500	пA
Large Signal Voltage Gain	Av	$R_L = 2k\Omega$		100	<u> </u>	dB.
Maximum Output Voltage Swing	· V _{OM}	$R_L = 10k\Omega$		±14	<u> </u>	v
Total Harmonic Distortion	THD	f=1kHz, Vo=5Vrms, Gv=20dB		0.002		%
Supply Voltage Rejection Ratio	SVR		l —	20	150	μ٧/٧
Channel Separation	CS	f=IkHz	l —	82	_	dB
Unity Gain Bandwidth	f _T	$G_V = 0dB$		7	_	MHz
Slew Rate	SR	$G_V = 0 dB$, $R_L = 2k\Omega/100 pF$		2.2	_	V/µs
Equivalent Input Noise Voltage	VNI	Rs= $1k\Omega$, BW= $10Hz\sim30kHz$, Flat		2.0	_	μVrm


■ TEST CIRCUIT

(1) I_{ce} , V_{io} , SVR

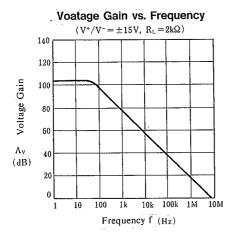
		SWc	SW	Select ch
	Icci, Vioi, SVRt	OFF	1	ch 1
_	Icc2, Vio2, SVR2	ON	2	ch 2

(2) I_b, I_{lo}

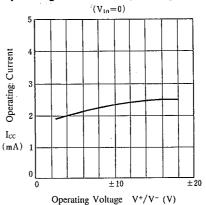
Unit Resistance: Ω Capacity: F

$$\begin{split} I_{b}{}^{+} &= V_{0}{}^{+}/1M\Omega \\ I_{b}{}^{-} &= V_{0}{}^{-}/1M\Omega \\ I_{10} &= |I_{b}{}^{+} - I_{b}{}^{-}| \end{split}$$

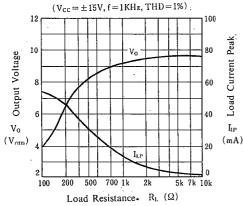
	SWc	SWι	SW ₂	Select ch
V ₀₁ .	OFF	1	1	ch 1
Voi	OFF	2	2	ch 1
V ₀₂	ON	2	2	ch 2
V ₀₂	ON	1	1	ch 2

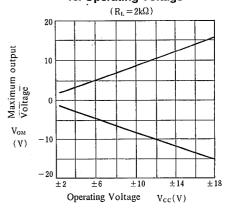

(3) ft, A_V

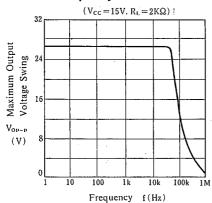
V	100p 100k 100k	SW ₁ 1 0. 2 1 SW ₂ 2 1M 470 μ	3 -7 -7 -7 -7 -7 -7 -7 -	ch2 4 -Vcc	SWc	5 0 + Vcc	1000p	\neg	V ₀
	,			/	,			CW	C.14

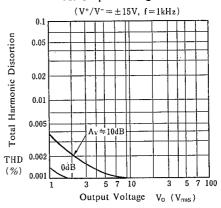

Unit Resistance: Ω Capacity: F

	SWc	SWı	SW ₂	Selection
fti, Avi	OFF	1	1	ch 1
f ₁₂ , A _{V2}	ON	2	2	ch 2

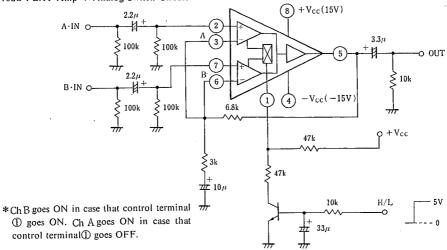

TYPICAL CHARACTERISTICS


Operating Current vs. Operating Voltage

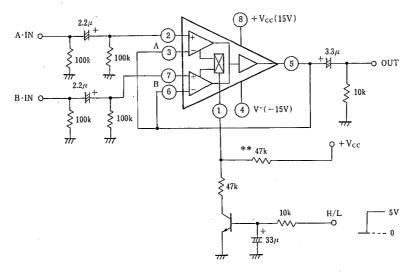

Output Voltage, Load Current Peak vs. Load Resistance


Maximum Output Voltage vs. Operating Voltage

Maximum Output Voltage Swing vs. Frequency

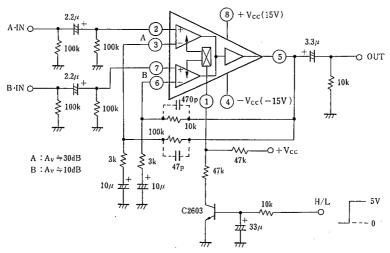


Total Harmonic Distortion vs. Output Voltage



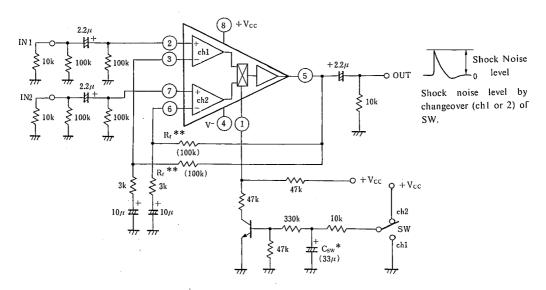
■ APPLICATION CIRCUIT

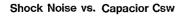
(1):Gv =10dB FLAT Amp + Analog Switch Circuit

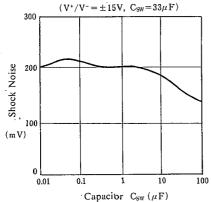


(2) Analog Switch Circuit (GV=0dB Voltage Follower Amp)

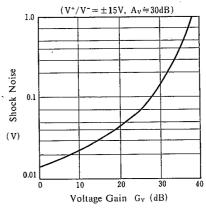
*:*Resistanc(**) is Pull-up-resistance for prevent from switching terminal going ON by reakage of external circuit (TR...etc).

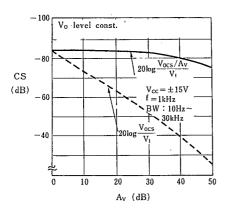

■ TYPICAL APPLICATION CIRCUIT



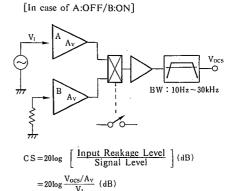

*ChB goes ON in case that control terminal ① goes ON. Ch A goes ON in case that control terminal ② goes OFF. Unit Resistance: Ω Capacity: F

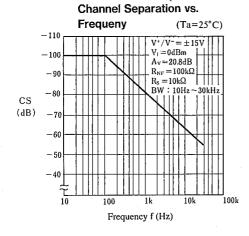
■ SHOCK NOISE TEST

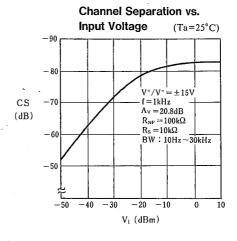

Test Curcuit



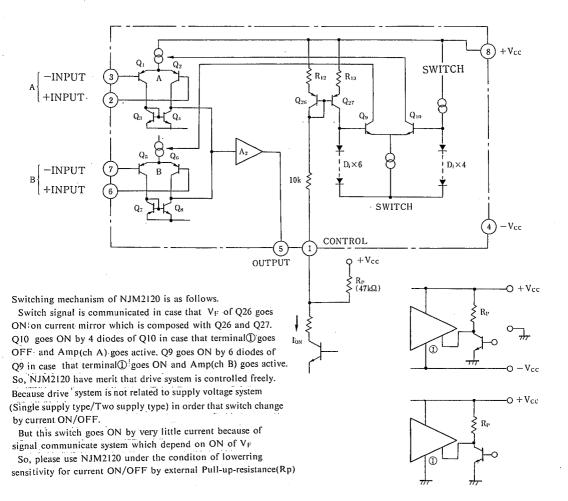
Shock Noise vs. Voltage Gain

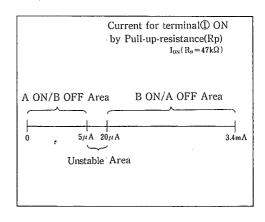

■ CHANNEL SEPARATION




C·S is defined on ratio of reakage signal which occur on input side and input signal.

$$(20\log \frac{Vocs / Av}{Vi})$$


But, C·S seem to be inferior apparently in case that Gain(Av) is left out of consideration.



■ SWITCHING MECHANISM

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.